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Abstract

Storing high-resolution images is a challenging problem 
due to its high storage cost and growing storage demands. 
To address this issue, we explore the feasibility of using 
deep convolutional networks for efficient storage and on-
demand high resolution image generation. In this paper, we 
conducted experiments using Super-Resolution 
Convolutional Neural Network (SRCNN) and Efficient 
Sub-Pixel Neural Network (ESPCN) to generate high 
resolution (HR) images given low resolution (LR) images 
as the inputs. We evaluated the performance of SRCNN 
and ESPCN with a scaling factor of 4x. Our results show 
that SRCNN and ESPCN can produce promising  results in 
producing high-resolution images with improved quality 
compared to traditional upscaling methods such as bicubic 
interpolation. However, we should carefully considered the 
trade-off between image quality and computational cost as 
SRCNN and ESPCN can be computationally intensive for 
both training and real-time inference. Our findings suggest 
that single-image super-resolution (SISR) with SRCNN 
and ESPCN can be a promising approach for efficient 
storage and real-time high resolution image generation, but 
further experiments are needed to optimize the 
performance and scalability of this technique for different 
applications.


1. Introduction

Single-image super-resolution (SISR) has emerged as a 
promising technique for increasing the spatial resolution of 
images. It has various applications in computer vision, 
including medical imaging, surveillance, and video 
streaming. One of the significant challenges associated 
with storing high-resolution images is the high storage cost 
and large storage space requirements. This challenge 
becomes even more critical when dealing with social media 
sites and image-sharing platforms that host millions, if not 
billions, of user-generated images. Storing a large amount 
of high resolution images can be very costly for these 
platforms.


To solve this problem, we propose a solution to store user-
generated images as low resolution (LR) and generate high 

resolution (HR)  images on demand using SISR techniques. 
Our goal is to significantly reduce storage costs while 
maintaining high image quality when serving to the end 
users. In this paper, we will use Super-Resolution 
Convolutional Neural Network (SRCNN) and Efficient 
Sub-Pixel Neural Network (ESPCN). Our experiments 
focus on evaluating the performance of SRCNN and 
ESPCN using much smaller datasets as compared to 
datasets used in the original publications of these models.


Our proposed solution has the potential to provide a cost-
effective and sustainable way to store images at scale 
because most of the images, especially on social media 
sites and image-sharing platforms, are typically accessed 
frequently for a very short period of time (ranging from 
few days to few weeks). After that period, most of the 
images are either never accessed or  accessed rarely. 
Therefore, we can store most of those images as LR which 
will significantly reduce storage cost. To serve HR images 
efficiently, we can use a smart cache strategy that will store 
frequently accessed images in the cache as HR. For 
example, whenever an image in the cache is accessed, we 
can renew the cache expiry  and the image is only removed 
from the cache if it is not accessed before the cache expiry 
duration. Setting a cache expiry duration is application 
specific and if done properly can reduce significant 
computational cost associated with converting LR image to 
HR.


2. Related Work

Social media sites and image-sharing platforms such as 
Facebook and Google Photos uses a combination of 
techniques to store billions of images uploaded by their 
users. These techniques include compression and resizing 
to reduce image size while maintaining quality. Some of 
the most widely used compression techniques are JPEG 
and PNG. These compression techniques can reduce 
significant storage and transmission costs, however, these 
techniques either lead to a loss of image quality or cause 
minor reduction in size. For example, lossy compression 
techniques such as JPEG can degrade image quality, 
especially at high compression ratios. On the other hand, 
lossless compression techniques such as PNG may not 
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achieve significant compression ratios especially for high 
resolution images.


In recent years, deep learning based super-resolution 
techniques such as SRCNN and ESPCN have gained 
significant attention due to their ability to generate high 
quality images. More advanced generative models such as 
Generative Adversarial Networks (GANs) can generate 
even higher resolution images with realistic details. 
However, these generative models are more complex and  
computationally expensive. Therefore, we are only going to 
evaluate the performance of SRCNN and ESPCN in this 
paper.


3. Method

In this paper, we are evaluating two deep learning based 
models for single image super-resolution. In this section, 
we describe these models in more details, along with the 
metrics we have selected for evaluating their performance, 
and the datasets we have used for training and validation.


3.1 SRCNN

Super-Resolution Convolutional Neural Network (SRCNN) 
is one of the most commonly used deep learning based 
super-resolution models. SRCNN utilizes a three-layer 
CNN to learn the mapping between low resolution and high 
resolution images. The SRCNN model is optimized to 
minimize the mean squared error (MSE) between the 
predicted high resolution image and the ground truth high 
resolution image. There are multiple variants of the 
SRCNN model as described in the original publication. The 
9-5-5 network achieves the best performance but at the cost 
of the running time. As we are converting low resolution 
images to high resolution in real-time, we decide to use the 
9-1-5 variant which is the fastest among all with marginal 
difference in performance.


3.2 ESPCN

Efficient Sub-Pixel Neural Network (ESPCN) is a single 
image super-resolution (SISR) method that increases the 
spatial resolution of an image by reconstructing high 
resolution details from a low resolution image. ESPCN 
uses a sub-pixel convolutional layer to upscale the image 
by rearranging the low resolution image data into a high 
resolution grid to increase the number of pixels in the 
image.


We decide to use ESPCN along with SRCNN because 
SRCNN model can be computationally expensive and may 
not be suitable for real-time applications. So, we will also 
evaluate ESPCN which is considered more efficient than 
SRCNN while maintaining high image quality.


3.3 Metrics

To evaluate the performance of SRCNN and ESPCN, we 
are using Peak Signal-to-Noise Ratio (PSNR). This is a 
widely used metric that measures the quality of the image 
by calculating the ratio of the maximum possible power of 
a signal to the power of corrupting noise that affects the 
representation. A higher PSNR value indicate higher image 
quality. To have a baseline PSNR value, we use bicubic 
interpolation to convert low resolution image to high 
resolution and then use its PSNR value as the baseline to 
compare the performance of SRCNN and ESPCN. There 
are other performance metrics such as Structural Similarity 
Index (SSIM) but given the limited time, we are going to 
use the PSNR as our evaluation metric.


For training and validation, we used mean squared error 
(MSE) loss function. It measures the average squared 
difference between the predicted high resolution image and 
the ground truth high resolution image.


3.4 Training Data

Deep learning models are usually trained on large datasets. 
In the SRCNN paper, the author used a dataset of 91 
images which was decomposed into 24,800 sub-images and 
another dataset of 395,909 images which was decomposed 
into over 5 million sub-images. Similarly, in the ESPCN 
paper, the author used a randomly selected set of 50,000 
images from the ImageNet to train the model.


Given the limited time and resources, we used DIV2K 
dataset which is a widely used benchmark dataset for 
image super-resolution. The dataset consists of 800 
training, 100 validation, and 100 testing images. We also 
used a variant of DIV2K dataset by decomposing it into 
over 21,000 training and 2700 validation sub-images. To 
create the sub-images, we first resized low resolution 
images to match high resolution image dimensions and 
then extracted sub-images with a patch size of 256x256.


Both our datasets consists low resolution images and 4x 
high resolution images. For ESPCN, we use these images 
as it is with some normalization and resizing as it takes low 
resolution input and outputs a high resolution image which 
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is upscaled by a given factor (4x in our case). However, 
SRCNN requires input and output images to be of same 
size. So, to upscale low resolution images, we first 
upsample an image to a bigger size and then downsample it 
by a factor of 4 and then resize it again to match the output 
size.


4. Experiments


4.1 Initial Experiment

We train both SRCNN and ESPCN on DIV2K and DIV2K 
sub-images datasets. For the starting point, we used a 
learning rate of 1e-3 with a multi-step scheduler that 
decays learning rate by a factor of 0.1 with milestones at 
48, 72, and 88 epochs. We used a batch size of 64 and 16 
for the training and validation, respectively for the smaller 
dataset. For the bigger dataset, we used a batch of 128 and 
100 for training and validation, respectively. We have 
trained our model for 100 epochs.


Figure 1 shows the training and validation loss. We can see 
that both SRCNN and ESPCN has lower loss when trained 
on bigger DIV2K sub-images dataset. Similarly, figure 2 

shows that bigger dataset results in better PSNR value. It is 
clear that training on bigger dataset will result in better 

model performance and hence it is critical to train these 
models on big enough datasets to have better performance.


4.2 Learning Rate

We experimented with different learning rates and found 
that 1e-3 is the best learning rate resulting in the best PSNR 
value and minimum loss. We have used Adam as the 
optimizer and initially experimented with different learning 
rate weight decay step sizes. In figure 3, after epoch 48, the 
PSNR value stops improving, especially when using bigger 
dataset. This was due to learning rate weight decay after 
epoch 48. So, we decided to use 1e-3 as the learning rate 
with learning rate decreasing to 1e-4 after epoch 88.


4.3 Batch Size

Large batch sizes can cause the model to converge quickly 
and can lead to overfitting and poor generalization. In 
figure 4, we compared SRCNN with batch size of 16 and 
64. From the figure, it is clear that a smaller batch size of 
16 results in slightly better performance. However, a batch 
size smaller than 16 doesn’t show any differences during 
our experimentation. We also experimented with a bigger 
batch size of 128 which resulted in faster converge without 
significant difference in performance. We also tried to use a 
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Figure 1: Training and validation loss of models when trained on 
DIV2K and DIV2K sub-images dataset.

Figure 2: Training and validation PSNR (dB) of models when trained on 
DIV2K and DIV2K sub-images dataset.



batch size of 256 for the bigger dataset but it caused a 
memory error. 
 4.4 Gaussian Blur


Gaussian blur is a common image processing technique for 
generating low resolution images for super-resolution 
tasks. It blurs a given image by averaging the pixel values. 
However, when we used it as a preprocessing step, we saw 
a decrease in performance of both SRCNN and ESPCN. 
So, we conducted an experiment to compare the 
performance with and without gaussian blur. Figure 5 
shows that model without gaussian blur gives significantly 
better performance as compared to model using gaussian 
blur as the preprocessing step. So, we decided to not use it 
in our final model.


4.5 Input Size

When using larger image input size, the SRCNN and 
ESPCN can capture more detailed features and textures 
which can help in producing more realistic high resolution 
outputs. We experimented with two different sets of input 
sizes, 112x112 and 224x224. Figure 6 shows that larger 
input size results in better performance in both SRCNN and 
ESPCN.
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Figure 3: Training and validation PSNR (dB) of models with different learning 
rate step decay. Figure 4: Training and validation PSNR (dB) of models with different batch size 

when trained on DIV2K dataset.

Figure 5: Training and validation PSNR (dB) of models when trained with 
and without gaussian blur on DIV2K dataset.



4.6 Final Model

We have trained our final SRCNN and ESPCN models for 
100 epochs using a training batch size of 128. For 
validation, we used a batch size of 100 for bigger dataset 
and a batch size of 50 for smaller dataset. We used a 

starting learning rate of 1e-3 with Adam as the optimizer 
and a learning rate decay by a factor of 0.1 after 88 epochs.


Figure 7 shows that bigger dataset results in lower loss. We 
also noticed that ESPCN results in bigger loss when trained 
on smaller dataset as compared to SRCNN. In figure 8, we 
can see that both models result in significantly lower 
performance when trained on smaller dataset. It also shows 
that ESPCN performs significantly worse than SRCNN 
when trained on a smaller dataset. When trained on bigger 
dataset, both models have identical performance with 
ESPCN performing slightly better than SRCNN.


4.7 Evaluation

We used Set5 and Set14 to test to performance of SRCNN 
and ESPCN along with the DIV2K validation set. Both 
Set5 and Set14 are standard benchmark datasets used in 
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Figure 6:  PSN (dB) with different input size.

Figure 7: Training and validation loss of fine-tuned models when trained 
on DIV2K and DIV2K sub-images dataset.

Figure 8: Training and validation PSNR (dB) of fine-tuned models trained 
on DIV2K and DIV2K sub-images dataset.

Figure 9: PSNR (dB) comparison on different datasets with bicubic 
interpolation as the baseline metrics.



super-resolution tasks, and consists of 5 and 14 images, 
respectively. Figure 9 shows the performance of 4 models 
on different datasets. Generally, CNN models perform 
worse on smaller datasets and figure 9 shows that both 
SRCNN and ESPCN perform worse when trained on 
smaller datasets. We also noticed that SRCNN performs 
better than ESPCN when both models are trained on 
smaller dataset but ESPCN slightly performs better when 
trained on large dataset. When compared to the baseline 
bicubic PSNR value, we found that bicubic interpolation 
results in better PSNR value as compared to models trained 
on smaller dataset.


6

Figure 10: Training time comparison

Figure 11: Comparing predicted images on Set5 on SRCNN model trained on smaller dataset.



One interesting thing we noticed after testing the models on 
Set5 and Set14 datasets is that they perform much worse as 
compared to performance on div2k validation dataset. The 
baseline bicubic interpolation PSNR value is better in these 
cases. This shows that both SRCNN and ESPCNN are not 
well tuned to handle images that are from completely 
different dataset with different features.


When comparing the training time, we notice that ESPCN 
model trains much faster as compared to SRCNN. Figure 
10 shows that ESPCN trains significantly faster when 
trained on large dataset as compared to SRCNN.


The figure 11 shows a comparison of predicted high 
resolution output by SRCNN model as compared to simple 
bicubic interpolation and the ground truth high resolution 
image. From the figure, we can see that images with 
bicubic interpolation have high PSNR values as compared 
predicted model even though we can see that predicted 
images look way better than the images upsampled using 
bicubic interpolation. One reason may be that images 
upsampled using bicubic interpolation are much smoother 
than predicted which resulted in better PSNR value.


5. Conclusion

In this paper, we have experimented with different deep 
learning based super-resolution models such as SRCNN 
and ESPCN. Although our proposed models were not able 
to perform significantly better than the baseline bicubic 
interpolation, we still think that these models can produce 
promising results if trained on large enough datasets. For 
example, authors of SRCNN and ESPCN have trained 
models on much bigger datasets as compared to datasets 
we used. Apart from using bigger datasets, we can 
experiment with different preprocessing techniques such as 
laplacian pyramid super-resolution, progressive 
upsampling, etc. We can even use transfer learning by 
using pre-trained models to fine-tune them for image super-
resolution.


GitHub Link: https://github.com/mahalrs/super-scaler
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