
Efficient Storage with On-Demand Single-Image Super-Resolution

Rajwinder Mahal

rsm2207@columbia.edu

Abstract

Storing high-resolution images is a challenging problem
due to its high storage cost and growing storage demands.
To address this issue, we explore the feasibility of using
deep convolutional networks for efficient storage and on-
demand high resolution image generation. In this paper, we
conducted experiments using Super-Resolution
Convolutional Neural Network (SRCNN) and Efficient
Sub-Pixel Neural Network (ESPCN) to generate high
resolution (HR) images given low resolution (LR) images
as the inputs. We evaluated the performance of SRCNN
and ESPCN with a scaling factor of 4x. Our results show
that SRCNN and ESPCN can produce promising results in
producing high-resolution images with improved quality
compared to traditional upscaling methods such as bicubic
interpolation. However, we should carefully considered the
trade-off between image quality and computational cost as
SRCNN and ESPCN can be computationally intensive for
both training and real-time inference. Our findings suggest
that single-image super-resolution (SISR) with SRCNN
and ESPCN can be a promising approach for efficient
storage and real-time high resolution image generation, but
further experiments are needed to optimize the
performance and scalability of this technique for different
applications.

1. Introduction

Single-image super-resolution (SISR) has emerged as a
promising technique for increasing the spatial resolution of
images. It has various applications in computer vision,
including medical imaging, surveillance, and video
streaming. One of the significant challenges associated
with storing high-resolution images is the high storage cost
and large storage space requirements. This challenge
becomes even more critical when dealing with social media
sites and image-sharing platforms that host millions, if not
billions, of user-generated images. Storing a large amount
of high resolution images can be very costly for these
platforms.

To solve this problem, we propose a solution to store user-
generated images as low resolution (LR) and generate high

resolution (HR) images on demand using SISR techniques.
Our goal is to significantly reduce storage costs while
maintaining high image quality when serving to the end
users. In this paper, we will use Super-Resolution
Convolutional Neural Network (SRCNN) and Efficient
Sub-Pixel Neural Network (ESPCN). Our experiments
focus on evaluating the performance of SRCNN and
ESPCN using much smaller datasets as compared to
datasets used in the original publications of these models.

Our proposed solution has the potential to provide a cost-
effective and sustainable way to store images at scale
because most of the images, especially on social media
sites and image-sharing platforms, are typically accessed
frequently for a very short period of time (ranging from
few days to few weeks). After that period, most of the
images are either never accessed or accessed rarely.
Therefore, we can store most of those images as LR which
will significantly reduce storage cost. To serve HR images
efficiently, we can use a smart cache strategy that will store
frequently accessed images in the cache as HR. For
example, whenever an image in the cache is accessed, we
can renew the cache expiry and the image is only removed
from the cache if it is not accessed before the cache expiry
duration. Setting a cache expiry duration is application
specific and if done properly can reduce significant
computational cost associated with converting LR image to
HR.

2. Related Work

Social media sites and image-sharing platforms such as
Facebook and Google Photos uses a combination of
techniques to store billions of images uploaded by their
users. These techniques include compression and resizing
to reduce image size while maintaining quality. Some of
the most widely used compression techniques are JPEG
and PNG. These compression techniques can reduce
significant storage and transmission costs, however, these
techniques either lead to a loss of image quality or cause
minor reduction in size. For example, lossy compression
techniques such as JPEG can degrade image quality,
especially at high compression ratios. On the other hand,
lossless compression techniques such as PNG may not

1

achieve significant compression ratios especially for high
resolution images.

In recent years, deep learning based super-resolution
techniques such as SRCNN and ESPCN have gained
significant attention due to their ability to generate high
quality images. More advanced generative models such as
Generative Adversarial Networks (GANs) can generate
even higher resolution images with realistic details.
However, these generative models are more complex and
computationally expensive. Therefore, we are only going to
evaluate the performance of SRCNN and ESPCN in this
paper.

3. Method

In this paper, we are evaluating two deep learning based
models for single image super-resolution. In this section,
we describe these models in more details, along with the
metrics we have selected for evaluating their performance,
and the datasets we have used for training and validation.

3.1 SRCNN

Super-Resolution Convolutional Neural Network (SRCNN)
is one of the most commonly used deep learning based
super-resolution models. SRCNN utilizes a three-layer
CNN to learn the mapping between low resolution and high
resolution images. The SRCNN model is optimized to
minimize the mean squared error (MSE) between the
predicted high resolution image and the ground truth high
resolution image. There are multiple variants of the
SRCNN model as described in the original publication. The
9-5-5 network achieves the best performance but at the cost
of the running time. As we are converting low resolution
images to high resolution in real-time, we decide to use the
9-1-5 variant which is the fastest among all with marginal
difference in performance.

3.2 ESPCN

Efficient Sub-Pixel Neural Network (ESPCN) is a single
image super-resolution (SISR) method that increases the
spatial resolution of an image by reconstructing high
resolution details from a low resolution image. ESPCN
uses a sub-pixel convolutional layer to upscale the image
by rearranging the low resolution image data into a high
resolution grid to increase the number of pixels in the
image.

We decide to use ESPCN along with SRCNN because
SRCNN model can be computationally expensive and may
not be suitable for real-time applications. So, we will also
evaluate ESPCN which is considered more efficient than
SRCNN while maintaining high image quality.

3.3 Metrics

To evaluate the performance of SRCNN and ESPCN, we
are using Peak Signal-to-Noise Ratio (PSNR). This is a
widely used metric that measures the quality of the image
by calculating the ratio of the maximum possible power of
a signal to the power of corrupting noise that affects the
representation. A higher PSNR value indicate higher image
quality. To have a baseline PSNR value, we use bicubic
interpolation to convert low resolution image to high
resolution and then use its PSNR value as the baseline to
compare the performance of SRCNN and ESPCN. There
are other performance metrics such as Structural Similarity
Index (SSIM) but given the limited time, we are going to
use the PSNR as our evaluation metric.

For training and validation, we used mean squared error
(MSE) loss function. It measures the average squared
difference between the predicted high resolution image and
the ground truth high resolution image.

3.4 Training Data

Deep learning models are usually trained on large datasets.
In the SRCNN paper, the author used a dataset of 91
images which was decomposed into 24,800 sub-images and
another dataset of 395,909 images which was decomposed
into over 5 million sub-images. Similarly, in the ESPCN
paper, the author used a randomly selected set of 50,000
images from the ImageNet to train the model.

Given the limited time and resources, we used DIV2K
dataset which is a widely used benchmark dataset for
image super-resolution. The dataset consists of 800
training, 100 validation, and 100 testing images. We also
used a variant of DIV2K dataset by decomposing it into
over 21,000 training and 2700 validation sub-images. To
create the sub-images, we first resized low resolution
images to match high resolution image dimensions and
then extracted sub-images with a patch size of 256x256.

Both our datasets consists low resolution images and 4x
high resolution images. For ESPCN, we use these images
as it is with some normalization and resizing as it takes low
resolution input and outputs a high resolution image which

2

is upscaled by a given factor (4x in our case). However,
SRCNN requires input and output images to be of same
size. So, to upscale low resolution images, we first
upsample an image to a bigger size and then downsample it
by a factor of 4 and then resize it again to match the output
size.

4. Experiments

4.1 Initial Experiment

We train both SRCNN and ESPCN on DIV2K and DIV2K
sub-images datasets. For the starting point, we used a
learning rate of 1e-3 with a multi-step scheduler that
decays learning rate by a factor of 0.1 with milestones at
48, 72, and 88 epochs. We used a batch size of 64 and 16
for the training and validation, respectively for the smaller
dataset. For the bigger dataset, we used a batch of 128 and
100 for training and validation, respectively. We have
trained our model for 100 epochs.

Figure 1 shows the training and validation loss. We can see
that both SRCNN and ESPCN has lower loss when trained
on bigger DIV2K sub-images dataset. Similarly, figure 2

shows that bigger dataset results in better PSNR value. It is
clear that training on bigger dataset will result in better

model performance and hence it is critical to train these
models on big enough datasets to have better performance.

4.2 Learning Rate

We experimented with different learning rates and found
that 1e-3 is the best learning rate resulting in the best PSNR
value and minimum loss. We have used Adam as the
optimizer and initially experimented with different learning
rate weight decay step sizes. In figure 3, after epoch 48, the
PSNR value stops improving, especially when using bigger
dataset. This was due to learning rate weight decay after
epoch 48. So, we decided to use 1e-3 as the learning rate
with learning rate decreasing to 1e-4 after epoch 88.

4.3 Batch Size

Large batch sizes can cause the model to converge quickly
and can lead to overfitting and poor generalization. In
figure 4, we compared SRCNN with batch size of 16 and
64. From the figure, it is clear that a smaller batch size of
16 results in slightly better performance. However, a batch
size smaller than 16 doesn’t show any differences during
our experimentation. We also experimented with a bigger
batch size of 128 which resulted in faster converge without
significant difference in performance. We also tried to use a

3

Figure 1: Training and validation loss of models when trained on
DIV2K and DIV2K sub-images dataset.

Figure 2: Training and validation PSNR (dB) of models when trained on
DIV2K and DIV2K sub-images dataset.

batch size of 256 for the bigger dataset but it caused a
memory error.
 4.4 Gaussian Blur

Gaussian blur is a common image processing technique for
generating low resolution images for super-resolution
tasks. It blurs a given image by averaging the pixel values.
However, when we used it as a preprocessing step, we saw
a decrease in performance of both SRCNN and ESPCN.
So, we conducted an experiment to compare the
performance with and without gaussian blur. Figure 5
shows that model without gaussian blur gives significantly
better performance as compared to model using gaussian
blur as the preprocessing step. So, we decided to not use it
in our final model.

4.5 Input Size

When using larger image input size, the SRCNN and
ESPCN can capture more detailed features and textures
which can help in producing more realistic high resolution
outputs. We experimented with two different sets of input
sizes, 112x112 and 224x224. Figure 6 shows that larger
input size results in better performance in both SRCNN and
ESPCN.

4

Figure 3: Training and validation PSNR (dB) of models with different learning
rate step decay. Figure 4: Training and validation PSNR (dB) of models with different batch size

when trained on DIV2K dataset.

Figure 5: Training and validation PSNR (dB) of models when trained with
and without gaussian blur on DIV2K dataset.

4.6 Final Model

We have trained our final SRCNN and ESPCN models for
100 epochs using a training batch size of 128. For
validation, we used a batch size of 100 for bigger dataset
and a batch size of 50 for smaller dataset. We used a

starting learning rate of 1e-3 with Adam as the optimizer
and a learning rate decay by a factor of 0.1 after 88 epochs.

Figure 7 shows that bigger dataset results in lower loss. We
also noticed that ESPCN results in bigger loss when trained
on smaller dataset as compared to SRCNN. In figure 8, we
can see that both models result in significantly lower
performance when trained on smaller dataset. It also shows
that ESPCN performs significantly worse than SRCNN
when trained on a smaller dataset. When trained on bigger
dataset, both models have identical performance with
ESPCN performing slightly better than SRCNN.

4.7 Evaluation

We used Set5 and Set14 to test to performance of SRCNN
and ESPCN along with the DIV2K validation set. Both
Set5 and Set14 are standard benchmark datasets used in

5

Figure 6: PSN (dB) with different input size.

Figure 7: Training and validation loss of fine-tuned models when trained
on DIV2K and DIV2K sub-images dataset.

Figure 8: Training and validation PSNR (dB) of fine-tuned models trained
on DIV2K and DIV2K sub-images dataset.

Figure 9: PSNR (dB) comparison on different datasets with bicubic
interpolation as the baseline metrics.

super-resolution tasks, and consists of 5 and 14 images,
respectively. Figure 9 shows the performance of 4 models
on different datasets. Generally, CNN models perform
worse on smaller datasets and figure 9 shows that both
SRCNN and ESPCN perform worse when trained on
smaller datasets. We also noticed that SRCNN performs
better than ESPCN when both models are trained on
smaller dataset but ESPCN slightly performs better when
trained on large dataset. When compared to the baseline
bicubic PSNR value, we found that bicubic interpolation
results in better PSNR value as compared to models trained
on smaller dataset.

6

Figure 10: Training time comparison

Figure 11: Comparing predicted images on Set5 on SRCNN model trained on smaller dataset.

One interesting thing we noticed after testing the models on
Set5 and Set14 datasets is that they perform much worse as
compared to performance on div2k validation dataset. The
baseline bicubic interpolation PSNR value is better in these
cases. This shows that both SRCNN and ESPCNN are not
well tuned to handle images that are from completely
different dataset with different features.

When comparing the training time, we notice that ESPCN
model trains much faster as compared to SRCNN. Figure
10 shows that ESPCN trains significantly faster when
trained on large dataset as compared to SRCNN.

The figure 11 shows a comparison of predicted high
resolution output by SRCNN model as compared to simple
bicubic interpolation and the ground truth high resolution
image. From the figure, we can see that images with
bicubic interpolation have high PSNR values as compared
predicted model even though we can see that predicted
images look way better than the images upsampled using
bicubic interpolation. One reason may be that images
upsampled using bicubic interpolation are much smoother
than predicted which resulted in better PSNR value.

5. Conclusion

In this paper, we have experimented with different deep
learning based super-resolution models such as SRCNN
and ESPCN. Although our proposed models were not able
to perform significantly better than the baseline bicubic
interpolation, we still think that these models can produce
promising results if trained on large enough datasets. For
example, authors of SRCNN and ESPCN have trained
models on much bigger datasets as compared to datasets
we used. Apart from using bigger datasets, we can
experiment with different preprocessing techniques such as
laplacian pyramid super-resolution, progressive
upsampling, etc. We can even use transfer learning by
using pre-trained models to fine-tune them for image super-
resolution.

GitHub Link: https://github.com/mahalrs/super-scaler

References

[1] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-

resolution using deep convolutional networks, CoRR.
abs/1501.00092 (2015).

[2] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R.
Bishop, D. Rueckert, and Z. Wang. Real-Time Single
Image and Video Super-Resolution Using an Efficient
Sub-Pixel Convolutional Neural Network, CoRR. abs/
1609.05158 (2016).

[3] C. Ledig et al. Photo-Realistic Single Image Super-
Resolution Using a Generative Adversarial Network,
CoRR. abs/1609.04802 (2016).

7

https://github.com/mahalrs/super-scaler

