Comparative Analysis of Machine Learning Models for
Short-Term Rental Price Prediction

Yihua Hu Rajwinder Mahal Mouwei Lin
M.S. in Computer Science M.S. in Computer Science M.S. in Data Science
UNI : yh3485 UNI: rsm2207 UNI : Im3756
Zhaomeng Wang Lihan Zhou
M.S. in Computer Engineering M.A. in Mathematics
UNI : zw2801 UNI: 122765

I. INTRODUCTION

Short-term rentals are gaining popularity in recent years,
with Airbnb leading the change. Airbnb has enabled anyone to
quickly put up a listing on its platform to make extra money by
renting out unused space in their homes and apartments. When
listing properties, one of the biggest challenges is finding the
perfect listing price to attract potential customers. If you have
multiple listings or have been listing your property for some
time, you can easily use historical data to find competitive
listing pricing. However, when you are just starting out, you
might not be able to predict the best possible pricing. At the
same time, it is possible that things are changing in the market
based on seasonal demand and the overall economy. So, in this
case, simply using the average prices from the past might not
be the best option to find a competitive listing price. So, we
are going to create a prediction model that can be used by
hosts to find the most competitive price for their listings.

We use the Airbnb Listings Dataset as the data source to
train our machine learning model. This dataset has a total
number of 494, 954 records of Airbnb rental information with
89 features. Features include categorical features such as city,
country, and Room type, numerical features like the number
of bedrooms, beds, and baths, and descriptive text features like
neighborhood overview and Summary. The label of the data
is the daily rental price.

We are applying the following ML techniques to solve the
problem.

o Data cleaning, exploratory data analysis, and feature
engineering. Records from the raw dataset are not able
to be directly fed into the model. We need first to process
the data and do visualizations to better prepare it for the
machine learning models.

o NLP techniques to transform descriptive text features
into categorical features. Descriptive text features like
neighborhood overview are hardly learnable for models.
NLP helps us to transform these kinds of features into
ones that are easier to interpret.

« Supervised machine learning. We are planning to build
simple regression models and move toward more com-
plex ones. Potential Models will be ensembled decision
tree-based models: bagging models like Random Forest
and boosting models such as CatBoost and XGBoost,

and Deep Learning models like ANN under the spatial
consideration of the price being non-linear.

II. OUR SOLUTION

In this section, we show our detailed solution to building
the model based on the Airbnb Listings dataset to predict the
best labeling.

A. Initial data exploration

The 494,954 records from the Airbnb dataset are from
more than 20 countries, most of which are concentrated in
four English-speaking countries, the United States, the United
Kingdom, Canada, and Australia. So we filter out records
that are from other countries and focus on data from these
four countries. Moreover, after scanning through all provided
features, we leave out features carrying no useful information
like the Listing Url and Picture Url.

As a result, we have a total of 267,066 records with 47
features after the initial exploration of the dataset.

B. Data preprocessing

Our work in data preprocessing includes three parts: missing
value preprocessing, data encoding, and text feature extracting.

1) Missing value processing: There are columns that have
a high percentage (over 25%) of missing values. We handle
this problem as below.

o Neighbourhood is important but has about 27% missing
values. We use Zipcode to group neighborhoods and then
drop the Neighbourhood column.

« Different Review Score features like Review Scores Loca-
tion and Review Scores Accuracy have a missing rate of
over 26%. We impute these features by using the average
of them.

o We drop the rest features with their missing value ac-
counting for more than 30% of the records.

2) Data encoding: We combine various encoding methods

to extract information from features of different types.

« We use ordinal encoding to encode categorical features
of Host Response Time, Room Type, Bed Type, and
Cancellation Policy.

o We use target encoding to encode categorical features of
City, State, Zipcode, Country, and Property Type.

o For features Amenities and Features that consist of a list
of keywords separated by commas, we split each value

into keywords and use one-hot encoding to encode these
two features.

Finally, we apply the standard scaler to rescale numerical
features.

3) Text feature extracting: We use VADER Sentiment Anal-
ysis for text feature extraction on descriptive text features like
Description, Transport, and Notes.

VADER (Valence Aware Dictionary and sEntiment Rea-
soner) is a lexicon and rule-based sentiment analysis tool
that is specifically tuned to sentiments expressed in social
media. It uses a combination of A sentiment lexicon, a list of
lexical features generally labeled according to their semantic
orientation as either positive or negative with a specific value
ranging from —1 to 1. Therefore, applying VADER can give
us a quantification of the texts’ emotions, which is helpful
for the model since the texts’ emotions are influential for the
pricing for the fact that users are willing to spend more money
on a positively described room.

After all the above three preprocessing steps, the dataset
comes to 256,298 rows with 165 features. We use random
splitting to split the whole data into a 60% training set, a 20%
validation set, and a 20% test set with random_state = 42.

C. Machine Learning techniques

We propose the following models to solve the problem.

« Linear Regression model. A common starting point to
predict a numerical label with encoded features is to use a
linear regression model. We use this model as the baseline
to evaluate the performance boost of other models.

o Tree-based models. Tree-based models are also able to
make numerical predictions. Since features like the num-
ber of rooms and beds are a good fit as splitting criteria
for tree nodes, we apply models including CatBoost and
XGBoost to see if this kind of model can perform well.

o Deep learning models. Deep learning models have been
widely used in various predicting works for their out-
standing ability to retrieve information from features over
conventional models. Our work includes deep learning
models of ANN, and we expect they can give an ideal
solution to the problem.

III. PERFORMANCE

In this section, we report the details about the application
as well as the performance of each model. We use both the
R2 score and mean absolute error(MAE) as the metric for all
models. All following models use mean absolute error as the
loss function.

A. Linear Regression

The Linear Regression model uses the basic idea of fitting
the price label as a linear function of all features and is the
baseline of all other models.

1) parameters: We choose sklearn.linear_model.Ridge
as our LR model with random_state=42 and all other default
parameters.

2) performance: This model achieves an MAE of 50.32 and
an R2 score of 0.57 on the test data, both reflecting that this
is not a good model. The most important 5 features in this
model are Zipcode, Accommodates, Bedrooms, Room Type,
and Bathrooms, ordered by the importance.

B. XGBoost

The XGBoost model is one of the most popular realizations
of gradient boosting and can support training on the GPU,
which provides an efficient way to handle large datasets.

1) parameters: We utilize zgboost.X GBRegressor API
to build our XGBoost model. In terms of model parameters,
we applied grid searches on a total number of 12 parameters
where the best parameters are as in Figure 1.

XGBRegressor(tree_method='gpu_hist',predictor="gpu_predictor’,max_depth=7,gamma=1.0,
min_child_weight=5,random_state=42,subsample=0.96,
colsample_bytree=0.6,n_jobs=-1,reg_alpha=100,
learning_rate=0.08,n_estimators=600)

Fig. 1. XGBoost model with best parameters.

2) performance: This model achieves an MAE of 36.18
and an R2 score of 0.73 on the test data, which shows a
considerable performance boost compared with the LR model.
The most important 5 features in this model are Room Type,
Bedrooms, Bathrooms, Accommodates, and Zipcode ordered
by the importance.

We graphed the prediction of the model on the first 100
test data with the true label as in Figure 2 to visualize the
performance details.

700 e predictions

true
600

400
300 ®
200 % M

001 *° x%y o %% 2 2 .. ‘e,

Fig. 2. XGBoost model predictions on the test data.

We can observe from the figure that our model can make
a good prediction when the true label is within 300%$. Data
points with too high label values have a high probability of
being over-underestimated by the model.

C. CatBoost

The CatBoost model is also a tree-based model as XGBoost
but utilizes ordered boosting instead of gradient boosting. We
also take advantage of its ability to train on the GPU to reduce
training time.

1) parameters: We use catboost.CatBoostRegressor
API for the construction of our CatBoost model. Grid search is
applied on four parameters, which are bootstrap_type, depth,
12_leaf reg, and learning_rate. The best parameters are as
below.

{’bootstrap_type’: 'Bernoulli’, 'depth’: 10, ’12_leaf reg’: 3,
"learning_rate’: 0.095}

2) performance: This model achieves an MAE of 35.12 and
an R2 score of 0.73 on the test data, which is very close to
the performance of the XGBoost model. The most important 5
features in this model are Zipcode, Accommodates, Bedrooms,
Room Type, and Bathrooms, ordered by the importance.

D. ANN-1

The ANN model is the basic version of deep learning
models that implements biological neuron systems to simulate
the human learning process.

1) parameters: We use keras.models.Sequential API to
build our ANN model. The specific model structure is as in
Figure 3.

dense_20_input | input: [(None, 158)]

InputLayer output: | [(None, 158)]
dense_20 | input: (None, 158)
Dense output: | (None, 128)
dense_21 input: (None, 128)
Dense output: | (None, 256)
dense_22 | input: (None, 256)
Dense output: | (None, 256)
dense_23 | input: | (None,256)

Dense output: (None, 1)

Fig. 3. ANN model structure

We compile this model with adam as the optimizer and train
the model with epoch = 100 and batch_size = 256.

2) performance: This model achieves an MAE of 45.11 and
an R2 score of 0.56 on the test data. We apply SHAP to figure
out the feature importance of this model. The most important 5
features in this model are Room Type, Accommodates, Zipcode,
Extra people, and City, ordered by the importance.

E. ANN-2

To fully exploit the potential of the deep learning model,
we construct another ANN model with additional layers and
use grid search to tune parameters.

1) parameters: We use keras.models.Sequential API to
build our ANN-2 model. We apply gird search on five pa-
rameters, which are learning_rate, dropout, layers, batch_size,
and epoches. The best model is compiled with adam as the
optimizer and is trained with epoch = 30 and batch_size =
256.

2) performance: This model achieves an MAE of 40.21
and an R2 score of 0.64 on the test data. Applying SHAP,
the most important 5 features in this model are Room Type,
Zipcode, Accomodates, Bedroooms, and City, ordered by the
importance.

IV. CONCLUSION

Based on the observation of the model performance, we
draw the following conclusions.

First, all models outperform the linear regression model,
where the CatBoost model attains the best performance with
an MAE of 35.12 and an R2 score of 0.73. The detailed
performance of all models is shown in the table below. This
result is not ideal for real-life scenarios, so we propose ways
to help optimize it in the following Section V.

TABLE I
PERFOMANCE SUMMARY OF ALL MODEL

| LR | CatBoost | XGBoost | ANN-1 | ANN-2
MAE | 50.32 | 35.12 36.18 45.11 40.21
R2 0.57 0.73 0.73 0.56 0.64

Second, by comparing the performances of tree-based mod-
els and deep-learning models, we can conclude that tree-based
models are more fit for this problem with rather structured
data. In terms of training and tuning time, both tree-based
models spend less time compared with the ANN-2 model,
again proving their superiority for this problem.

Third, all models give very similar results for the most 5
important features. To conclude, Zipcode, Accommodates, and
Room Type are the most frequently nominated features, which
is in line with the human thinking style.

V. FUTURE OPTIMIZATIONS

Based on the observation of the performances of our models,
we propose the following methods that may give a better
solution to the problem.

o Apply advanced NLP learning methods. In our work,
we utilize a primitive NLP method, VADER, to quantify
the emotion of the descriptive text to a number ranging
from —1 to 1. However, text features such as Access carry
more specific information like the time to the bus stops
or the subways, which is not proper to be evaluated just
on its semantic orientation. Thus, more advanced NLP
methods are in need to better derive information from
complex text features.

o Build disparate models for records from different
countries. On exploration into the dataset, we find out
that the feature Prices is of varied currencies according
to the country, which may influence the overall accuracy
of model predictions on the label. Therefore, training
models focusing on only one country may help to learn
region-based feature patterns and thus improve the model
performance.

o Add a branch model to learn features from the room
pictures. From visualization of the model predictions in
subsection III-B, we find that the model performs badly at
high prices. Recalling the process of customers viewing
Airbnb records to estimate rental prices, especially when
the rent is high, the picture of the room will be a very
important element to establish an initial impression. So
adding picture learning to the model may contribute to
the price estimation.

