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Abstract—Online news reading has become one of the most
popular ways to consume the latest news. News aggregation
websites such as Google News and Yahoo News have made it
easy for users to find the latest news and provide thousands of
news stories from hundreds of news publishers. As people have
limited time, reading all news articles is not feasible. As the
success of zero-shot and few-shot prompting with models like
GPT-3 has led to a paradigm shift in NLP research, we conducted
experiments to explore the feasibility of using enhanced content
features such as news categories and named entities to improve
the quality and coherence of generated news summaries. Our
results provide insights into the effectiveness of different LLMs
(BART and PEGASUS) for news summarization and the impact
of additional content features such as topic modeling, named
entities, and sentiment analysis. The proposed approach could
be beneficial for users who consume news online and want to
quickly and efficiently obtain the most relevant information.

Index Terms—news aggregation websites, zero-shot prompting,
few-shot prompting, GPT-3, NLP research, enhanced content fea-
tures, news categories, named entities, LLMs, BART, PEGASUS,
news summarization, topic modeling, sentiment analysis

I. INTRODUCTION

Online news reading has become one of the most popular
ways for people to stay informed about the latest events around
the world. With the advent of news aggregation websites such
as Google News and Yahoo News, it is easier than ever to
access news all around the world. However, with the amount
of information that is available, it is not feasible to consume
every article in detail. Although most news aggregators use
recommendation systems to show the news based on user pref-
erences, it is still not feasible to consume all the information.
As a result, there is a growing need for efficient and effective
methods to make it easier to consume information at scale and
help readers quickly consume the most important information.

In recent years, there has been increasing interest in using
natural language processing (NLP) techniques for news sum-
marization. More specifically, large language models (LLMs)
such as GPT-3 [1] have shown impressive performance in
a wide range of NLP tasks including machine translation,
question-answering, and text generation. As a result, there has
been increasing interest in using LLMs for news summariza-
tion.

However, these existing methods have limitations, including
low-quality summaries and computational complexity, which
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make them unsuitable for practical applications at scale. To
address these issues, we experimented with a new approach
that uses additional content features such as news headlines,
categories, topic modeling, and named entities to improve
the quality and coherence of generated summaries. We also
experimented with different optimization techniques such as
quantization, model pruning, and distributed training to reduce
the model size and improve both training and inference time.
Our goal is to achieve state-of-the-art performance on news
summarization benchmark datasets while keeping the model
as lightweight as possible.

In this paper, we present the design and implementation
details of our proposed approach and its performance eval-
uation. Specifically, we fine-tuned BART and PEGASUS on
CNN/DailyMail dataset [2] and examined their performance.

II. RELATED WORK

News summarization is one of the most important tasks in
the field of natural language processing. In the early days,
news summarization used heuristics-based methods such as
sentence extraction and sentence compression to generate
summaries. As these methods failed to capture the underlying
meaning of the text, they often produce low-quality results.
In recent years, there are new approaches that use machine
learning techniques to improve the quality of generated sum-
maries. These approaches include both extractive and abstrac-
tive summarization methods. In extractive summarization, the
goal is to select a subset of sentences from the input text to
create a summary. A common approach is to use supervised
learning methods to rank sentences based on their importance
to the overall meaning of the article. This approach has shown
promising results in generating high-quality summaries but
it requires a large amount of annotated data. In abstractive
summarization, the goal is to generate a new text that sum-
marizes the input text. It often generates summaries that are
more coherent and informative than extractive summarization,
however, these abstractive summarization methods are more
challenging to implement and require more sophisticated ma-
chine learning techniques such as deep neural networks.

In recent years, there has been increasing interest in using
large language models (LLMs) such as GPT-3 for news sum-
marization. These models have shown state-of-the-art results



on a wide range of NLP tasks including news summarization.
However, these models still have some limitations in terms of
summarization quality and computational complexity. To ad-
dress these limitations, we are conducting various experiments
to improve news summarization and develop a lightweight
model that is computationally less expensive but still generates
high-quality summaries.

III. MODELS AND DATASETS

The central components of our approach are the state-of-
the-art pre-trained models that we are going to leverage and
fine-tune to achieve our goals.

A. BART - Bidirectional and Auto-Regressive Transformers

Bidirectional and Auto-Regressive Transformers (BART)
[3] is a sequence-to-sequence transformer model developed by
Facebook AI Research (FAIR). It is based on the transformer
architecture introduced in the original paper by Vaswani et al.
(2017) [4] and uses a combination of denoising auto-encoding
and back-translation techniques. During pre-training, it uses
a noise function to corrupt the text data so that the model
can learn to reconstruct the original text. It utilizes a standard
sequence-to-sequence transformer architecture except that it
uses GELU activation functions instead of ReLU. The base
model has 6 layers in the encoder and decoder. Each decoder
layer performs cross-attention over the final hidden layer of the
encoder. In Figure 1, the encoder inputs are corrupted using
mask symbols which are then encoded using the bidirectional
encoder. Then the likelihood of original inputs is calculated
with an autoregressive decoder. This pre-training technique
allows the model to learn a more robust understanding of the
structure of the input data and has shown excellent results
in various tasks such as text generation and summarization.
Figure 2 shows that the BART has a total of 560 million
trainable parameters.
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Fig. 1. BART encoder-decoder.

B. PEGASUS - Pre-training with Extracted Gap-sentences for
Abstractive Summarization

PEGASUS [5] is a pre-trained large transformer-based
encoder-decoder model that has shown impressive results in
abstractive summarization. Unlike other pre-training models
such as BERT which mask individual words in the input
text, PEGASUS masks complete sentences in the input text
during pre-training as shown in its architecture in Figure
3. This allows PEGASUS to focus on the most important

Layer (type:depth-idx) Param #
|-BartForConditionalGeneration: 1-1 -

| L BartModel: 2-1 —

| | LEmbedding: 3-1 51,471,360
| | LBartEncoder: 3-2 203,678,720
| | L BartDecoder: 3-3 254,084,096
| LLinear: 2-2 51,471,360

Total params: 560,705,536
Trainable params: 560,705,536
Non-trainable params: @

Fig. 2. BART layers and parameters.

parts of the input text and generate more informative and
coherent sentences. In our experiments, we used the Hug-
ging Face distribution of PEGASUS-large which has 197
million trainable parameters and 669 million non-trainable
parameters, as shown in Figure 4. As PEGASUS uses unsu-
pervised pre-training techniques, it has a large number of non-
trainable parameters. These non-trainable parameters are used
for various tasks such as embeddings, positional encoding, and
normalization, and these parameters are not updated during
fine-tuning or downstream tasks. However, PEGASUS still
has a large number of trainable parameters that allows it
to capture more complex relationships between input and
output text during fine-tuning. Overall, PEGASUS has shown
state-of-the-art results in text summarization, including news
summarization.
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Fig. 3. Pegasus encoder-decoder.

Layer (type:depth-idx) Param #
|-PegasusForConditionalGeneration: 1-1 -
| L_pegasusModel: 2-1 -
| | L_Embedding: 3-1 98,409,472
| | L—PegasusEncoder: 3-2 (300,999,680)
| | L_pegasusDecoder: 3-3 (368,206,848)
| LLinear: 2-2 98,409,472

Total params: 866,025,472
Trainable params: 196,818,944
Non-trainable params: 669,206,528

Fig. 4. PEGASUS layers and parameters.

C. Daily Mail CNN Dataset

The CNN / Daily Mail dataset is an English-language
dataset consisting of just over 300,000 unique news articles



authored by journalists at CNN and the Daily Mail. The dataset
was initially created for machine-reading comprehension and
abstractive question answering, but it supports both extractive
and abstractive summarization tasks as well. Each data in-
stance contains three fields: an identifier (’id’), the full text of
the news article ("article’), and a summarized version ("high-
lights’). For our study, we will be using the *highlights’ field as
the target summary of the article’ field. The dataset displays a
token count per instance with an average of 781 tokens for the
"article’ field and approximately 56 tokens for the ’highlights’
field. This difference underscores the summarization challenge
inherent in the dataset, as the model will need to distill the
essence of a lengthy article into a much shorter summary. To
ensure robust training and accurate evaluation, we will use the
recommended split of the dataset into training, testing, and
validation subsets. Specifically, there will be approximately
287,000 instances for training, 11,000 for testing, and 13,000
for validation. During the initial stages of the project, we
will employ the training and validation subsets to search
for optimal hyperparameters. We will then conduct the final
evaluation on the test subset, keeping it separate throughout
the process to ensure an unbiased evaluation of our model’s
performance. The decision to use the CNN / Daily Mail dataset
for our research is primarily driven by resource constraints and
the scope of our project. Despite its limitations, this dataset
provides a valuable opportunity to study the performance of
our models in the context of news article summarization.

IV. EVALUATION METRICS

As we are using sequence-to-sequence models, we used the
softmax cross-entropy loss as the primary metric to optimize
the model. The softmax cross-entropy measures the difference
between the predicted and actual probability distributions of
the target tokens in the output sequences. By minimizing the
loss, the decoder learns to generate sequences, in our case
summaries, that are more similar to the ground truth.

For the evaluation of our fine-tuned models, we will be
using the industry-standard Recall-Oriented Understudy for
Gisting Evaluation (ROGUE) [6] which measures the perfor-
mance of automatic summarization and machine translation
tasks. The evaluation compares the inference result (summary
of a text) of a model against a set of human-generated
reference summaries. To evaluate the quality of the summary
after combining different results we will be using the Bilin-
gual Evaluation Understudy (BLEU) [7] score which is an
algorithm for evaluating precision.

Initially, we planned to use a tiny test set (< 100 articles) to
generate summaries using our model as well as using existing
models such as GPT-3 and ChatGPT and then use a human
to rank summaries without telling which one is generated
by which model. Our intuition was that this will help us
understand whether our model produces results that are on
par with state-of-the-art LLMs such as GPT-3 and ChatGPT
which are much larger than our proposed model. However, due
to limited time and resources, we couldn’t perform the human

evaluation of generated summaries and this is something that
we will consider in future work.

V. TRAINING METHODOLOGY

Training large language models (LLMs) can be a daunting
task, particularly when time and resources are limited. Due
to the size of these models, it is not practical to train them
on a single GPU. Therefore, we utilized distributed training
on Google Cloud to accelerate the process. Our training was
performed using four Tesla V100 GPUs, implementing a
distributed data-parallel strategy to effectively reduce training
time. We used virtual machines with 32 vCPUs and at least
120GB RAM.

To streamline the training process and minimize potential
issues, we employed PyTorch Lightning, a framework that
simplifies the implementation of distributed training. This
allowed us to focus on the training strategy itself, while
the framework handled the complexities of setting up the
distributed training.

To keep track of our training process, we used Tensorboard
for logging and Weights & Biases [8] for hyperparameter
search. While we initially attempted to use PyTorch Profiler
for profiling our models, we encountered memory errors due
to the large size of our models. Consequently, we performed
some profiling using the built-in time package in Python as
an alternative solution. However, we may opt to use PyTorch
Profiler if we get access to a better GPU with higher memory,
such as the Nvidia A100.

During training, we used machine learning best practices
and user training and validation split to track the learning
process of our models. We used test split only during the final
evaluation of our fine-tuned models.

Throughout the training process, we adhered to machine
learning best practices and utilized a training and validation
split to monitor our models’ learning progress. We reserved the
test split exclusively for the final evaluation of our fine-tuned
models. We also tried to employ early stopping to prevent
overfitting and reduce training time and tried to monitor
the validation loss to perform early stopping. However, the
training time was taking over 10 hours per epoch so we had
to let it run overnights and we couldn’t actively monitor the
loss during the training although we kept track of all logs
using the Tensorboard.

A. Batch Size

The batch size is a hyperparameter that determines the
number of training samples used in one iteration of gradient
calculation. A larger batch size typically results in faster
convergence but requires more memory and computation re-
sources. In our case, we used a batch size of 4 per GPU to
maximize GPU memory utilization. We tried to go higher but
that resulted in a memory error. In total we used 4 GPUs,
resulting in an effective batch size of 16.

The original input and output size of 1024 tokens was
initially selected for our experiments, but we faced issues
running experiments with this size due to its large memory



footprint on our GPUs. To overcome this issue, we analyzed
the training dataset to compute the mean and median length
of input text and target summaries. Our analysis revealed that
the average article length was approximately 600 words, and
the average summary length was around 64 words. Based on
these findings, we reduced the input and output sizes to 512
and 128 tokens, respectively. This adjustment allowed us to
use a batch size of 4 per GPU, and thus better utilize our
available computational resources.

B. Learning Rate

Initially, we set the base learning rate to Se-5, but we later
performed a hyperparameter search to determine the optimal
learning rate (see the next section for details). Additionally, we
employed a linear learning rate with a warmup scheduler from
the Transformers library, which is a widely used technique.
The warmup scheduler increases the learning rate during the
initial phase of training, followed by a linear decrease in the
learning rate as training progresses. We used it to improve
the model convergence and prevent the model from getting
stuck in the local minima. By gradually increasing the learning
rate during the initial warmup phase, the model can explore
a larger portion of the parameter space which helps in faster
convergence and improved generalization.

VI. PERFORMANCE TUNING METHODOLOGY

Hyperparameter tuning is a critical component of machine
learning training. To facilitate this process, we utilized Weights
& Biases to perform a random hyperparameter search. How-
ever, due to the enormity of our models and dataset, each
sweep run was taking roughly 10 hours to complete. To
overcome this challenge, we performed a hyperparameter
search on a subset of our training data, which accounted for
approximately 25% of the entire dataset. Additionally, we em-
ployed a validation split to evaluate the model’s performance
during the hyperparameter search. We conducted ten random
sweep runs for each of our models, BART and PEGASUS.
Our primary objective in the hyperparameter search was to
tune the learning rate, weight decay, and the ratio of warmup
steps to the total number of training steps. For the evaluation
of our models, we used the ROUGE score to measure the
performance of generated summaries and the BLEU score to
evaluate the quality of the generated summaries. The results
of our hyperparameter search will be presented in the next
section.

VII. EXPERIMENTAL RESULTS

In our experiments, we used pre-trained BART large and
PEGASUS large. We conducted different experiments includ-
ing a hyperparameter search. In this section, we will present
and discuss the outcomes of our experiments.

In our initial experiments, we conducted a hyperparameter
search using Weights & Biases on a small subset of our
dataset due to its large size and increased training time. We
conducted 10 random sweeps for both BART and PEGASUS.
Figure 5 shows the hyperparameter sweeps for PEGASUS. We

observed that using warm-up steps with weight decay caused
PEGASUS to have a significantly higher loss. As shown
in Figure 6, the warm-up step ratio is the most important
hyperparameter for PEGAUS. Consequently, we conducted
two separate experiments (explained later) for PEGASUS -
one with the best warm-up step ratio of 0.05 and weight
decay of 0.01, and another experiment without warm-up
steps and weight decay. Figure 7 shows the training loss for
the BART hyperparameter search. Like PEGASUS, BART
exhibits similar behavior concerning warm-up steps as shown
in Figure 8, with warm-up step ratio being the most important
hyperparameter, but with slightly less relative weight than
PEGASUS.

After performing a hyperparameter search, we conducted
four experiments: BART with and without warmup steps and
PEGASUS with and without warmup steps. Figure 10 displays
the validation loss of these experiments. We observed that
both BART and PEGASUS have high validation loss with
warmup steps, with PEGASUS having a much higher loss
than BART. Without warmup steps, both models have very
similar validation loss. However, we noticed that the loss does
not decrease as we train for more steps. We also evaluated
these experiments using ROUGE and BLEU scores. Figure
10 shows the evaluation scores on the test set. We found that
PEGASUS without the warmup step performs the best, with
BART without the warmup steps following closely behind.

Finally, we conducted experiments to evaluate the per-
formance of these fine-tuned models after quantization and
pruning. We used a post-training dynamic quantization ap-
proach using the Eager Mode Quantization method in PyTorch.
We quantized all four fine-tuned models in the previous
experiments. As expected all models performed worse than
the original models, as shown in Figure 11. But we noticed
that PEGASUS without the warmup steps tend to have slightly
better performance than the original model and much better
performance than all other models in the experiments.

During the pruning of models, we experimented with vari-
ous pruning rates ranging from 20% to 80%. As shown in Fig-
ure 12, we observed that a pruning rate of 40% gave the best
performance for all models except for BART without weight
decay, where an 80% pruning rate was better. Moreover, we
found that PEGASUS without warmup steps had the best
overall performance. Therefore, we conducted an additional
experiment of quantization to further investigate its capabilities
and its performance in the test dataset. The quantized model,
as expected, performed worse in both ROUGE scores (for
unigram and bigram) as well as on the BLEU score. However,
it was almost 2 times faster in inference and almost 7 times
smaller in size. This behavior demonstrates the trade-off
between the model size and its ability to perform demanding
NLP tasks.

VIII. CHALLENGES

In our endeavor, we faced several significant challenges.
Incorporating additional features such as topic modeling,
named entities, and news categories necessitated the use of
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Fig. 12. Test loss with different pruning ratios.




Model ROUGE-1 ROUGE-2 BLEU AVG Inference  Model Size
Time

Pegasus-large 0.360 0.1533 01134 4.58s 0.9281GB

fine-tuned on

cnn_dailymail and

quantized

Pegasus-large 0.418 0.2 0.174 9.2s 6.4 GB

fine-tuned on
cnn_dailymail

Fig. 13. Comparison between quantized and non-quantized model.

special tokens. However, adding new special tokens altered
the vocabulary and embedding size. We attempted to integrate
these, but due to limited computational resources, we were
compelled to focus our efforts on other aspects. The vocab-
ulary size for pre-trained models is fixed, making training
from scratch an infeasible option. Resource limitations further
compounded our challenges. Our models were enormous,
encompassing approximately 500 million parameters, and we
dealt with a large training dataset of around 287,000 news
articles and summaries. Distributed training was restricted to
just 4 GPUs due to Google Cloud’s quota limit, and these
resources were largely unavailable, though slightly easier to
access over the weekends. Lastly, in terms of performance
evaluation, although ROUGE and BLEU scores are industry
standards, we found that they may not fully encapsulate the
human perception of the quality or coherence of the generated
summaries, presenting yet another challenge in our work.

IX. OPEN SOURCE CONTRIBUTION

In the spirit of open science and to ensure complete trans-
parency and reproducibility of our research, we have made
all relevant code and models publicly available. The entire
suite of code developed for this study can be accessed at
our GitHub repository https://github.com/mahalrs/newsum.
Further, we have also utilized the Hugging Face platform
to share our trained models. For those interested in per-
forming inference with our models without going through
the hassle of setting up a local environment, we have cre-
ated a Hugging Face space. This will allow for an easy
and direct use of our models online. You can access this
at https://huggingface.co/spaces/aloutzidis/newsum and the
model id can be accessed via the Hugging Face handle
aloutzidis/pegasus-large-cnn-quantized. These resources are
intended to foster further research and development in the
community, and we welcome any feedback or contributions.

X. CONCLUSION

This paper has highlighted our comprehensive approach to
fine-tuning a Large Language Model on a news dataset. We
successfully performed distributed training across four GPUs,
demonstrating the feasibility and efficiency of this technique
in dealing with hundreds of millions of parameters. We further
optimized the PEGASUS model through the implementation
of quantization and pruning, thereby enhancing the model’s

performance while reducing its computational requirements.
We also performed benchmarking on PEGASUS and quan-
tized PEGASUS to offer a comparative understanding of the
performance of these models. However, our initial plan was to
incorporate additional features such as named entities, topic
modeling, and sentiment analysis as additional input to the
models to improve the quality of generated summaries. As we
started working on the project, we performed named entity
recognition and topic modeling as a data preprocessing step.
We planned to input these additional features using special
tokens, however, we didn’t realize in the beginning that adding
additional special tokens will require us to change the size
of the embedding layer as it changes the vocab size. As a
result, incorporating additional features such as named entities
was deemed unfeasible as it would have required training
from scratch, which was beyond our resource limitations. Our
best-performing model was the pegasus-large without weight
decay with quantization, illustrating the effectiveness of this
configuration. Lastly, we are proud to have contributed back to
the open-source community, facilitating further advancements
in the field. Our work, though challenging, has established a
robust foundation for future research into the application and
optimization of Large Language Models for news summariza-
tion tasks.
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