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Abstract

Online news publishers are constantly searching for
ways to capture the attention of their readers and stand out
from the competition. One way to do this is by using eye-
catching images for news stories to boost reader engage-
ment. However, finding and creating these images can be
time consuming and expensive, especially for small publish-
ers. To address this issue, we explore the feasibility of using
a transformer based model to generate images using news
headlines. In this paper, we propose a multi-modal image
generation model for news stories. The model is trained on
a dataset of news articles and images to generate images
that are visually appealing and consistent with the news
story.

1. Introduction

In the world of journalism and media, capturing and re-
taining readers’ attention is a top priority, especially when
there are hundreds of publishers publishing news stories on
the internet. One way to achieve this is by using visually ap-
pealing images, high quality cover images for news stories.
However, this task can be time consuming and costly as it
is not very straightforward to brainstorm, find and create
high quality images that are consistent with the news story
as well as appealing to grab readers’ attention. This is even
more challenging for smaller media outlets and individual
journalists that have limited resources and lack the financial
and personnel resources of larger media outlets.

Existing platforms like Unsplash and Shutterstock offer
solutions to these challenges but come with their own limi-
tations. High-quality images can come at a steep cost, and
images may not be exclusive to the publisher. Moreover,
finding high quality images on these platforms can also be
challenging, leaving media outlets struggling to stand out
from the crowd.

In addition to the challenges faced by journalists and
media outlets in finding and creating images for news sto-
ries, recent advances in generative models have presented
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new opportunities to explore new ways to solve many prob-
lems. Models such as DALL-E and ChatGPT have demon-
strated remarkable capabilities in generating images and
text. These advances in generative models sparked our cu-
riosity about the potential for these models to generate high
quality images for news stories. As a result, we propose a
multi-modal image generation model for news stories that
leverages the power of generative adversarial networks and
large language models to generate visually appealing im-
ages that are relevant and consistent with the news stories.
We conducted experiments using Vector Quantized Gener-
ative Adversarial Network (VQGAN) [2] and Bidirectional
and Auto-Regressive Transformers (BART) [5]. We trained
these models on a dataset of news articles and correspond-
ing images to generate visually appealing images. We think
that our model has the potential to help publishers create ex-
clusive, high quality images that boost readers’ engagement
with the news content.

2. Related Work

In recent years, generative models have demonstrated
impressive capabilities in generating high quality images
and it is an active area of research. DALL-E [7] is a gen-
erative model developed by OpenAl that uses transformer
based architecture to generate images from textual descrip-
tions. At a high level, DALL-E works by first encoding
the textual input into a high dimensional latent space us-
ing a transformer based encoder. This latent representation
is then passed through a series of generative convolutional
networks to produce a 2D grid of pixels. It also uses gen-
erative adversarial networks (GANs) to further refine gen-
erated images which helps to improve the visual realism of
the output images. Overall, DALL-E has shown to generate
highly realistic and complex images.

Another popular model is StyleGAN [4] which uses gen-
erative adversarial networks (GANSs) based architecture to
generate images with high levels of detail and style vari-
ation. It is developed by Nvidia and has shown to gener-
ate impressive images across a range of domains such as
art, fashion, and architecture. Unlike traditional generative
models which generate images by sampling from a fixed la-
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Figure 1. A convolutional VQGAN that leans a codebook of pixels by using a perceptual loss and a GAN generator loss.

tent space, StyleGAN generates images by first generating
a set of intermediate feature maps and then using adaptive
instance normalization to combine these features with the
learned style information. At a high level, it works by first
mapping a random noise vector to an intermediate latent
space which is then used to generate a set of intermediate
feature maps that capture various aspects of the image such
as shape, color, and texture. The model then uses adaptive
normalization to combine these intermediate feature maps
with the style information learned from the training data.
Overall, StyleGAN has shown impressive results in image
generation and has been used in a wide range of applications
such as image generation, style transfer, and image editing.

Furthermore, Diffusion models [3] have recently
achieved state-of-the-art results on a variety of tasks such
as image generation, text generation, and audio generation.
These diffusion models work by gradually adding noise to
a latent representation of the data and then learn to reverse
the noise process to generate new data. Models such as Im-
agen [8] and Stable Diffusion have shown state-of-the-art
results in image generation and represent a promising new
direction in generative modeling.

While models such as DALL-E, StyleGAN, and Ima-
gen have demonstrated impressive capabilities in generat-
ing high quality images, they have not been specifically de-
signed for generating images for news stories. Our intuition
is that these models can be improved to generate images that
are relevant and consistent with a given news story. To test
our intuition, we trained our model on a news dataset with
corresponding images. Our model builds on the strengths
of these existing models while also addressing the unique
challenges and requirements of generating images for news
stories.

3. Method

In this paper, we conducted experiments to generate im-
ages using Vector Quantized Generative Adversarial Net-
work (VQGAN) and Bidirectional and Auto-Regressive

Transformers (BART). In this section, we describe how we
used these models to create a simple multi-modal architec-
ture that is trained using limited resources and data, yet pro-
duces impressive results. Our model architecture approach
is inspired by DALL-E mini, which is a much smaller model
as compared to the original DALL-E, yet it has shown im-
pressive results in image generation.

3.1. VQGAN

Vector Quantized Generative Adversarial Network (VQ-
GAN) is a generative model that combines elements of both
generative adversarial networks (GANs) and vector quan-
tization to generate high quality images. VQGAN uses
a codebook of embedding vectors to quantize the feature
maps generated by the generator network. This allows VQ-
GAN to generate images that are semantically meaningful
and diverse. For our use case, we used VQGAN to encode
images into a sequence of discrete tokens that can be used
in a transformer model. Our approach used a pre-trained
convolutional VQGAN model that is trained on ImageNet.
In figure 1, a convolutional VQGAN learns a codebook of
pixels by using a perceptual loss and a GAN generator loss.
It uses Variational Autoencoder (VAE) to compress the in-
put data into a lower dimensional latent space, i.e. a code-
book. This codebook enables strong compression while re-
taining high perceptual quality. For example, representing a
256x256 image requires 65,536 discrete tokens. But by us-
ing the codebook, this 256x256 image can be divided into
16 sub-images with a 4x4 grid which can be represented
using only 256 discrete tokens. For our use case, we used
the encoder part of VQGAN in figure 1 to represent our
256x256 images using 256 discrete tokens from a vocabu-
lary of size 16,384.

3.2. BART

Bidirectional and Auto-Regressive  Transformers
(BART) is a sequence-to-sequence transformer model
developed by Facebook AI Research (FAIR). It is based
on the transformer architecture introduced in the original
paper by Vaswani et al. (2017), and uses a combination of



denoising auto-encoding and back-translation techniques.
During pre-training, it uses a noise function to corrupt the
text data so that the model can learn to reconstruct the
original text. It utilizes a standard sequence-to-sequence
transformer architecture except that it uses GELU acti-
vation functions instead of ReLU. The base model has 6
layers in the encoder and decoder. Each decoder layer
performs cross attention over the final hidden layer of
the encoder. In figure 2, the encoder inputs are corrupted
using mask symbols which are then encoded using the
bidirectional encoder. Then the likelihood of original inputs
is calculated with an autoregressive decoder. In our case,
we used a bidirectional encoder to encode captions and
headlines and trained an autoregressive decoder to output
image tokens (details in the next section).
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Figure 2. BART encoder and decoder.

3.3. Our architecture

Our implementation uses multi-modal approach, in-
spired by DALLE-Mini [1], where we use VQGAN and
BART to generate images. We used a pre-trained VQGAN
model which is trained on ImageNet. Based on our re-
search, we found that the pre-trained model doesn’t perform
well on faces, so we fine-tuned it on our news dataset. We
also used a pre-trained large BART model. We first sep-
arated the encoder and decoder from the model and used
them in our custom PyTorch Lightning module. We used
the pre-trained BART encoder as it is. For the BART de-
coder, we first set its weights to random values and then
modified its configuration to output 257 tokens (256 images
tokens + BOS token). We also modified its vocab size to
16,388 (16,384 VQGAN codebook size + BOS + EOS +
Padding + Decoder Start token). Our custom module man-
ually handles the forward pass between the encoder and de-
coder. It has a language modeling head that takes decoder
output to calculate the logits. We use softmax cross-entropy
loss between the model prediction logits and the original
image encodings from the VQGAN encoder.

In Figure 3, the inputs are image caption/headline with
corresponding image. We use BART tokenizer to tokenize
text into input ids. To convert image into tokens, we use
VQGAN encoder to represent image as 256 discrete tokens.
Then the encoded text is fed to the BART encoder to capture

the contextual information and semantic meaning of the in-
put. This encoder output is then fed to the BART decoder
along with encoded image tokens from VQGAN encoder.
The goal of the decoder is to learn how to output the next
image token in the given sequence. The decoder output then
can be fed to VQGAN decoder to reconstruct the generated
image.

3.4. Metrics

Our main goal is to produce images that could be rea-
sonably judged to be intelligible and relevant to the given
inputs (headlines/captions). For fine-tuning VQGAN, we
used Learned Perceptual Image Patch Similarity (LPIPS)
[9] loss as the primary metric to optimize the model. LPIPS
measures the perceptual distance between the generated im-
age, in our case a reconstructed image, and the ground truth
image in terms of their perceptual similarity. For evaluating
different VQGAN experiments and final image reconstruc-
tions, we used Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM) and LPIPS. PSNR measures
the difference between the original and reconstructed im-
ages in terms of their signal-to-noise ratio. SSIM measures
the structural similarity between the two images. By us-
ing multiple metrics, we gain a more comprehensive under-
standing of the performance of the VQGAN experiments.

For training the BART decoder, we used the softmax
cross-entropy loss as the primary metric to optimize the
model. The softmax cross-entropy measures the difference
between the predicted and actual probability distributions of
the target tokens in the output sequence. By minimizing the
loss, the decoder learns to generate sequences that are more
similar to the ground truth.

3.5. Training Data

Our initial plan was to scrape news articles with cor-
responding images from popular news publishers such as
TechCrunch and the New York Times. We implemented
a simple web crawler to scrape news articles from a given
list of target domains. As we started to scrape articles, our
crawler performed very well on scraping the article con-
tent including headlines. However, we find it very difficult
to extract the primary image from the page as each page
has multiple images including images related to ads. More-
over, most online news publishers only list image cred-
its as the image captions rather than a more descriptive
caption. So, we decided to use an existing dataset. We
found three datasets that fit our criteria: VisualNews [0],
NYTimes800k, and GoodNews. However, these datasets
were only available on request. So, we requested access
to these datasets and we first got access to VisualNews
dataset. It contains a large collection of news stories from
The Guardian, BBC, USA Today, and The Washington Post.
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Figure 3. Training pipeline for multi-modal image generation for news stories, inspired by DALL-E mini architecture.

It is composed of over 1.2 million images along with associ-
ated news articles, image captions, author information and
other metadata.

One of the main data preprocessing we performed was
to separate the images that have only captions from images
that have both captions and headlines. We also split the data
into train, validation, and test splits. We saved 10% of the
original data for testing and used 10% of the remaining 90%
data for the validation.

As the dataset is very large, we also pre-encoded images
using fine-tuned VQGAN encoder to speed up the training.
We also pre-encoded headlines and captions using BART
tokenizer to avoid doing it during BART decoder training.
Doing so, we avoided encoding images and text on-the-fly
during training. Moreover, we resized all original images
to 256x256 and took the center crop before encoding the
images using VQGAN encoder.

4. Fine-Tuning VQGAN

In this section, we describe in more details our process
for fine-tuning VQGAN and various experiments we con-
ducted, along with evaluation results using metrics such as
PSNR, SSIM, and LPIPS.

4.1. Experiment Setup

In our experiments, we used the original VQGAN im-
plementation by Esser et al. Figure 4 shows that the VQ-
GAN has about 90 million total parameters with about 76
million trainable parameters. Most of the architecture re-
lated code is adapted from the Taming Transformers repos-
itory, however, we end up making some adjustments since
the original code was dependent on multiple shared compo-
nents in the Taming Transformers repository. We decoupled

Layer (type:depth-idx) Param #
|—Encoder: 1-1 -

| LConv2d: 2-1 3,584

| L ModuleList: 2-2 -

| | L Module: 3-1 738,944

| | LModule: 3-2 738,944

| | L Module: 3-3 2,690,304
| | L Module: 3-4 2,952,448
| | L Module: 3-5 10,498,048
| L Modutle: 2-3 —

| | LResnetBlock: 3-6 4,721,664
| | L AttnBlock: 3-7 1,051,648
| | LResnetBlock: 3-8 4,721,664
| LGroupNorm: 2-4 1,024

| Lconv2d: 2-5 1,179,904
{-Decoder: 1-2 -

| Lconv2d: 2-6 1,180,160
| LModule: 2-7 —

| | L_ResnetBlock: 3-9 4,721,664
| | L AttnBlock: 3-10 1,051,648
| | LResnetBlock: 3-11 4,721,664
| L ModuleList: 2-8 —

| | LModule: 3-12 887,040

| | L Module: 3-13 1,215,232
| | L Module: 3-14 4,133,632
| | LModule: 3-15 4,855,296
| | L Module: 3-16 19,679,744
| LGroupNorm: 2-9 256

| Lconv2d: 2-10 3,459
j-vQLPIPSWithDiscriminator: 1-3 -

| LLPIPS: 2-11 -

| | LscalingLayer: 3-17 -

| | Lvgg16: 3-18 (14,714,688)
| | LNetLinLayer: 3-19 (64)

| | L NetLinLayer: 3-20 (128)

| | LNetLinLayer: 3-21 (256)

| | LNetLinLayer: 3-22 (512)

| | LNetLinLayer: 3-23 (512)

| LNLayerDiscriminator: 2-12 -

| | Lsequential: 3-24 663,361
-VectorQuantizer2: 1-4 -

| L_Embedding: 2-13 4,194,304
}—Conv2d: 1-5 65,792
|—Conv2d: 1-6 65,792

Total params: 91,453,380
Trainable params: 76,737,220
Non-trainable params: 14,716,160

Figure 4. VQGAN model summary

all the needed components and implemented our own train-
ing script. We fine-tuned VQGAN on over 800k images
which proved to be time consuming when done using a sin-
gle GPU. To tackle this issue, we modified the model to use
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Figure 5. Loss graphs from the VQGAN Fine-Tuning. Experiment
1 is in blue, and Experiment 2 is in orange.

PyTorch Lightning. We used four Tesla V100 GPUs. It is
common to set the number of data loading workers to the
number of CPU cores. In our case, we used 48 data load-
ing workers which significantly reduced GPU idle time. To
maximize the GPU memory use, we used a batch size of 4
per GPU with an effective batch size 16 (4 GPUs). We set
the learning rate to be the same as the one used in the orig-
inal pre-trained checkpoint, which is 4.5e-6. We also used
the distributed sampler for data loaders for efficient multi-
GPU training.

By making these modifications and leveraging the ben-
efits of PyTorch Lightning, we were able to fine-tune our
model in about 5 hours for 1 epoch, 4x reduction in train-
ing time.

4.2. Experiments

We tested three different versions of the VQGAN. The
first one ("Original”), used the pre-trained checkpoint that
was provided, without any fine-turning. The pre-trained
model was trained on ImageNet for 12 epochs. The sec-
ond version ("Experiment 1) was trained on our Visual-
News dataset for 1 epoch (5 hours training time), and the
third version ("Experiment 2”) was trained for 3 epochs (15
hours training time).

In GAN architecture, the goal of the generator, in our
case reconstructor, is to generate samples that are similar
to the real data so that the discriminator can’t distinguish
between the real and fake samples. As shown in Figure
5a and 5b, the discriminator loss was unstable for both ex-
periments, but it was higher on average for Experiment 2,
meaning that the generator/reconstructor was able to gen-

(a) Experiment 1 (1 epoch) test set results

(b) Experiment 2 (3 epochs) test test results

Figure 6. VQGAN fine-tuning results for Experiments 1 and 2

erate higher quality images that the discriminator could not
distinguish.

Figure 5c and 5d show the reconstruction loss for both
experiments. Although the loss is very unstable throughout
the training process, it tends to go downward. We can see
in figures 6a and 6b that the reconstruction loss in Exper-
iment 2 is slightly lower than that in Experiment 1. How-
ever, there is a big tradeoff between the training time and the
slight improvement in the reconstruction loss. For example,
Experiment 1 took about 5 hours to train and Experiment 2
took about 15 hours, almost 3 times more time. However,
there is only a slight improvement in the reconstruction loss
between the both experiments. The test reconstruction loss
in Experiment 1 is around 0.40 while in Experiment 2, it is
around 0.399.

4.3. Evaluation

As shown in Table 1 below, compared to the pre-trained
checkpoint, Experiment 1 achieved better results for PSNR
and SSIM, but a worse score for LPIPS.

PSNR SSIM  LPIPS
Pre-trained checkpoint  20.24  0.44  0.001809
Experiment 1 2049 047 0.001874
Experiment 2 20.27 046 0.001758

Table 1. Evaluation of the quality of reconstructed images using
various metrics.

Experiment 2 also achieved slightly better results for
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Figure 7. Image reconstruction using the different VQGAN checkpoints.

PSNR and SSIM, as well as a better score for LPIPS.
The PSNR and SSIM metrics correspond more directly to
the quantitative difference between the original and recon-
structed images, whereas LPIPS corresponds to the per-
ceptual similarity between the two images, measured by
their differences in the lower-level representations/features
learned by another neural network (VGG-19). This means
that Experiment 2’s outputs are generally more accurate in
terms of human perception and this can be clearly seen in
figure 7. As we can see in figure 7, all of the models capture
the core features of each of the images, but do not recon-
struct specific details, specifically the faces. But the fine-
tuned models do reconstruct the faces slightly more accu-
rately, and the second experiment in particular does a better
job at rendering small details such as hands.

Overall, we found that there was a fairly large impact for
fine-tuning the model on our VisualNews dataset, but it is
arguable whether the minor improvements in Experiment 2
were worth the tradeoff of needing 3x more training time.

5. Training BART Decoder

In this section, we describe in more details our process
for training the BART decoder and various experiments we

conducted, along with the final evaluation results using met-
rics such as PSNR, SSIM, and LPIPS. During the training
of the BART decoder, we used softmax cross-entropy loss.

5.1. Experiment Setup

In our experiments, we used the original BART encoder
and decoder from the pre-trained BART Large from the
Hugging Face. We first separated the encoder and decoder
from the pre-trained model. We used the encoder as it is
with frozen weights. For the decoder, we set its weights
to random and made some configuration changes based on
our requirements such as vocab size, input/output sequence
length, etc. To combine the encoder and decoder together,
we wrote our own module based on PyTorch Lightning and
manually handled forward pass including the decoder in-
puts and calculating logits. Figure 8 shows that our model
has about 439 million total parameters but only half of it
(235 million) are trainable. This is due to our approach to
freeze the encoder weights to speed up the training. Since
our dataset is very large, we used V100 GPUs with multi-
GPU training using PyTorch Lightning. We set the num-
ber of data loading workers to the number of available CPU
cores, which is 32 in our case.



Layer (type:depth-idx) Param #

|-BartEncoder: 1-1 -
L_Embedding: 2-1 (51,471,360)
LBartLearnedPositionalEmbedding: 2-2 (1,050,624)
LodutleList: 2-3 -

| LBartEncoderLayer: 3-1 (12,596,224)
| LBartEncoderLayer: 3-2 (12,596, 224)
| LBartEncoderLayer: 3-3 (12,596,224)
| LBartEncoderLayer: 3-4 (12,596,224)
| LBartEncoderLayer: 3-5 (12,596,224)
| LBartEncoderLayer: 3-6 (12,596,224)
| L BartEncoderLayer: 3-7 (12,596,224)
| LBartEncoderLayer: 3-8 (12,596,224)
| L BartEncoderLayer: 3-9 (12,596, 224)
| LBartEncoderLayer: 3-1 (12,596,224)
| LBartEncoderLayer: 3-1 (12,596,224)
| LBartEncoderLayer: 3-1 (12,596,224)
LLayerNorm: 2-4 (2,048)
|-BartDecoder: 1-2 -
LEnbedding: 2-5 16,781,312
L BartLearnedPositionalEmbedding: 2-6 265,216
LModuleList: 2-7 -

| I—Bar'cDecoderLalyer: 3-13 16,796,672

| I—Bar'cDecoderLayer: 3-14 16,796,672

| I—EartDecnderLayer: 3-15 16,796,672

| L BartDecoderLayer: 3-16 16,796,672

| L BartDecoderLayer: 3-17 16,796,672

| L BartDecoderLayer: 3-18 16,796,672
|
|
|
|
|
|

SRR

L BartDecoderLayer: 3-19 16,796,672
L BartDecoderLayer: 3-20
LBartDecoderLayer: 3-21
LBartDecoderLayer: 3-22
LBartDecoderLayer: 3-23
L BartDecoderLayer: 3-24

16,796,672
16,796,672
16,796,672
16,796,672
16,796,672
LLayerNorm: 2-8 2,048

Linear: 1-3 16,781,312
[:CrossEntropyLoss: 1-4 -

Total params: 439,068,672
Trainable params: 235,389,952
Non-trainable params: 203,678,720

Figure 8. BART encoder-decoder model summary.

5.2. Batch Size

The batch size is a hyperparamter that determines the
number of training samples used in one iteration of gra-
dient calculation. A larger batch size typically results in
faster convergence but requires more memory and compu-
tation resources. In our case, we used a batch size of 8 per
GPU to maximize GPU memory utilization. We tried to go
higher but that resulted in a memory error. In total we used
4 GPUs, resulting in an effective batch size of 32.

5.3. Learning Rate

We experimented with two different base learning rates,
5e-3 and 5e-5. We used a linear learning rate with a warmup
scheduler from the transformers library. It is a popular prac-
tice to increase the learning rate during the initial phase of
training, followed by a linear decrease in the learning rate
as training progresses. We used it to improve the model
convergence and prevent the model from getting stuck in
the local minima. By gradually increasing the learning rate
during the initial warmup phase, the model is able to ex-
plore a larger portion of the parameter space which helps
in faster convergence and improved generalization. We ini-
tialized the learning rate to a small non-zero value and then
gradually increased it to maximum value of 5e-3 or 5e-3 de-
pending on the experiment during the first 10% of the total
training steps (the warmup phase). By doing so, we aimed
to prevent the model from learning patterns too quickly,
which could potentially require unlearning later on. This
is especially relevant when fine-tuning a model on a new

val_loss_step .

test_loss_step
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Figure 9. BART decoder test loss with different learning rates.
a = 5e-3 is in blue, and o =5e-5 is in orange.

dataset, as rapid parameter changes may occur during ini-
tial training.

We experimented with 2 different base learning rates. In
figure 9a and 9D, it is clear that the learning rate of Se-5
performs much better compared to a base learning rate of
5e-3. Due to limited resources, we didn’t perform many
experiments to find the optimal learning rate but based on
these two experiments, we decided to use a base learning
rate of 5e-5.

5.4. Experiments

In this section, we provide more details on different
experiments conducted while training the BART decoder.
We conducted experiments using different datasets created
using the larger VisualNews dataset: a dataset of about
250k headlines with corresponding images, a dataset of
about 250k captions with corresponding images, and an-
other dataset of about 850k captions with corresponding im-
ages.

5.4.1 Initial Experiments

Initially, we conducted two parallel experiments, namely
captions_expl and headlines_expl. Unfortunately, both ex-
periments resulted in high training and validation loss with
no signs of improvement in model performance, as shown
in figure 10a and 10b. To address this issue, we decided to
use a linear learning rate scheduler with a warmup, using a
base learning rate of 5e-5. As we conducted two more ex-
periments, captions_exp2 and headlines_exp2, we observed
a much lower loss, almost close to zero. As we couldn’t
figure out the main cause of this significantly lower loss, we
conducted another experiment, captions_exp3, on the larger
captions dataset with over 850k images. Our intuition was
that our model might perform better if trained on a much
larger dataset. However, this also resulted in similar prob-
lems where the model’s performance failed to improve over
time.

Initially, we suspected that there might be issues with
our training process or model implementation. However,
we later discovered that we made a small mistake in our
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Figure 10. BART Decoder losses (before right shifting decoder
inputs)

decoder forward pass where we neglected to right shift the
decoder inputs. This resulted in the decoder being given
the entire input it needs to output instead of learning to pre-
dict the next token in the sequence, and hence impeding
the learning process. After spending a lot of time and GCP
credits, we finally resolved with issue with the help of Prof.
Austin Reiter.

After fixing the issue, our model’s performance im-
proved significantly in subsequent experiments conducted
in section 5.4.2. Looking back, we believe that this prob-
lem could have been avoided if we had used the BartFor-
ConditionalGeneration implementation from the transform-
ers library, with some modifications, instead of manually
handling the forward pass, decoder inputs and calculating
the logits. Nonetheless, this was a valuable learning experi-
ence that highlights the importance of careful implementa-
tion and debugging during the development process.

5.4.2 Experiments after fixing decoder inputs (right
shifting)

As we had limited time to test models after fixing the de-
coder inputs, we chose 3 models to test: headlines_expl,
captions_expl, and captions_exp2. The headline model
used headlines data as the input for training and the captions

Name Smoothed Value Step
6.789 6.777 24.4k

© captions_exp2  5.875 5.808 40.2k
headlines_exp1 6.81 6.81  40.2k
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(a) Decoder train loss

Name Smoothed Value Step
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(b) Decoder validation loss
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Figure 11. BART Decoder losses (after right shifting decoder in-
puts)

models used captions data as the input. The captions_expl
model used a learning rate of Se-3, and the other two models
used a learning rate of 5e-5. For all three experiments, we
used a linear learning rate scheduler with a warmup during
the first 10% of the total training steps.

Both of the expl models quickly dropped their loss val-
ues, but they then plateaued and did not improve further
over the course of training. On the other hand, the exp2
model was able to continue learning over the course of its
epochs, though its loss was beginning to plateau as well near
the end of the training. We think that the model in exp2 can
be improved if we train it on larger dataset (captions dataset
of 850k images), however, due to limited resources left at
the end, we couldn’t experiment any further. Also, table
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Figure 12. BART Decoder image generation during training, using different inputs and learning rates

2 shows that the test loss for all 3 models was pretty well
correlated with the training loss. As shown before, both
the captions_expl and headlines_expl models ended up at a
significantly higher loss than the captions_exp2 model.

5.5. Evaluation

Original

Generated

Figure 13. BART Decoder image generation during testing (model
captions_exp2)

As shown in Figure 12, only the captions_exp2 model
was able to begin generating images from the input tokens,
while both of the expl models were not able to generate
anything meaningful. The captions_exp2 model is begin-
ning to learn the general features present in the original im-
ages, but the results are still very distorted and not realistic.
We think that the performance of captions_exp2 model can
be further improved if we train it on a larger dataset as we
have seen earlier that its loss plateaued towards the end. It
is also possible that experimenting with different learning

rates would produce better results.

Moreover, the image generation quality of the cap-
tions_exp2 model did not carry over from training to test-
ing. During training time, we gave the model encodings
for both the caption text as well as the image, and had the
model learn to predict the next token after we right shifted
the decoder inputs. During evaluation, we give model ran-
dom captions and tried to generate images. However, the
model was only able to generate completely black or white
images, as shown in Figure 13.

Model Name  Text Input Learning Rate  Test Loss
captions_expl captions 5e-3 6.80
captions_exp2 captions Se-5 5.92
headlines_expl  headlines 5e-5 6.81

Table 2. Test loss for all 3 models

6. Challenges

During the initial phases of the project, we encountered
a steep learning curve that posed a significant challenge.
In the early stages, we found it difficult to gather infor-
mation on the DALL-E mini implementation to understand
its architecture. We found several repositories with JAX
implementation of DALL-E mini, however, these reposi-
tories presented us with not only technical difficulties but
also created a lot of confusion. Most of these reposito-
ries either handled only the inference part or were doing



much more than the simple implementation of the original
DALL-E mini architecture. However, we finally decided to
look into the transformers source code for the BART model,
specifically BartForConditionalGeneration. This helped us
understand how Bart can be used to generate any sequence,
in our case image tokens, given an input sequence.

We also encountered a major challenge while fine-tuning
the VQGAN. The goal of fine-tuning is to enable the model
to learn codebooks and representations that were better
suited to our dataset. However, during our experimenta-
tion, we discovered that fine-tuning didn’t result in signifi-
cant improvements in performance. Our hypothesis is that
this might be due to the fact the original VQGAN model
is already pre-trained on ImageNet which is a large dataset
with diverse images. So, fine-tuning on our dataset didn’t
result in significant improvements in performance but we do
see a slight improvement when reconstructing images with
faces.

As discussed in section 5.4.1, resolving the significantly
lower loss of BART decoder was one of the major chal-
lenges that consumed most of our time and GCP credits.
Even though the loss seemed to be going down at a proper
rate (as shown by graphs), the images generated were nearly
identical to the inputted images, even though the model was
supposed to be generating new images from the headline
text alone. We ended up realizing that we were directly
passing the image tokens both as inputs and labels, causing
the model to try to predict the same image. Instead, we had
to shift the labels to the right by 1, so that the model would
try to probabilistically generate the next token in the series.
Overall, it is a valuable learning experience that highlights
the importance of careful implementation and debugging
during the development process.

7. Conclusion and Future Work

In this paper, we conducted experiments to generate im-
ages using Vector Quantized Generative Adversarial Net-
work (VQGAN) and Bidirectional and Auto-Regressive
Transformers (BART). We implemented a simple multi-
modal architecture, however, the model is unable to pro-
duce reasonable results. We think that it can be improved as
we have seen in some of later experiments. We have seen
that after fixing the right shifting decoder inputs, our model
tends to generate reasonable results but at the same time,
it starts to converge after some time. We think that if we
pre-train it on the large captions dataset of 850k images
and then fine-tune it on the headlines dataset, the model can
produce better results. However, we couldn’t experiment
this as we used most of our GCP credits on fixing the issue
with decoder inputs. Moreover, it is possible that there’s
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a problem with our generate method, like we made a mis-
take in the decoder inputs, that is preventing the model to
generate reasonable results.

Moreover, we used a simple greedy searcher to generate
images. A greedy searcher produces a token one by one
starting with the decoder start token as the input to the de-
coder. Although this is a simple approach, it will always
produce similar results for the same input. So, a better ap-
proach would be to use beam search to produce multiple
outputs and then use CLIP to select the best generated out-
put. We also need to implement a user-friendly interface
and we can explore setting up HuggingFace Spaces in the
future to deploy our model for demonstration.

8. Source Code

Our code is available at https://github.com/
mahalrs/newsgen.

Majority of the code is written from scratch except the
VQGAN model implementation. We adapted VQGAN
model code from the Taming Transformers repository, how-
ever, we made some adjustments since the original code was
dependent on multiple shared components in the Taming
Transformers repository. So, we decoupled all the needed
components and implemented our own training script. We
also converted the model to use our own custom PyTorch
Lightning module.
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